An autocrine axis in the testis that coordinates spermiation and blood-testis barrier restructuring during spermatogenesis.

نویسندگان

  • Helen H N Yan
  • Dolores D Mruk
  • Elissa W P Wong
  • Will M Lee
  • C Yan Cheng
چکیده

The mechanism(s) that regulate and coordinate the events of spermiation and blood-testis barrier (BTB) restructuring in the seminiferous epithelium that occur concurrently at stage VIII of the seminiferous epithelial cycle of spermatogenesis are unknown. In this report, fragments derived from the laminin complex composed of laminin alpha3, beta3, and gamma3 chains (laminin-333) at the apical ectoplasmic specialization (apical ES) were shown to modulate BTB dynamics directly and/or indirectly via hemidesmosome. Experiments were performed using cultured Sertoli cells with functional tight junction (TJ) barrier and the ultrastructural features of the BTB but not apical ES. Recombinant protein fragments of laminin beta3 and gamma3 chains were shown to reduce the protein levels of occludin and beta1-integrin dose dependently at the Sertoli-Sertoli and Sertoli-basement membrane interface, respectively, thereby destabilizing the BTB permeability function. These results were corroborated by transient overexpression of laminin fragments in Sertoli cells. To further assess the role of beta1-integrin in hemidesmosome, knockdown of beta1-integrin in Sertoli cells by RNAi was found to associate with occludin redistribution at the Sertoli-Sertoli cell interface, wherein occludin moved away from the cell surface and became associated with endosomes, thereby destabilizing the BTB. In short, an apical ES-BTB-hemidesmosome autocrine regulatory axis was identified in testes, coordinating the events of spermiation and BTB restructuring that occur at the opposite ends of the seminiferous epithelium during spermatogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

F5-peptide induces aspermatogenesis by disrupting organization of actin- and microtubule-based cytoskeletons in the testis

During the release of sperm at spermiation, a biologically active F5-peptide, which can disrupt the Sertoli cell tight junction (TJ) permeability barrier, is produced at the site of the degenerating apical ES (ectoplasmic specialization). This peptide coordinates the events of spermiation and blood-testis barrier (BTB) remodeling at stage VIII of the epithelial cycle, creating a local apical ES...

متن کامل

A peptide derived from laminin-γ3 reversibly impairs spermatogenesis in rats

Cellular events that occur across the seminiferous epithelium in the mammalian testis during spermatogenesis are tightly coordinated by biologically active peptides released from laminin chains. Laminin-γ3 domain IV is released at the apical ectoplasmic specialization during spermiation and mediates restructuring of the blood-testis barrier, which facilitates the transit of preleptotene spermat...

متن کامل

Restricted Arp3 expression in the testis prevents blood-testis barrier disruption during junction restructuring at spermatogenesis.

In epithelia, a primary damage of tight junctions (TJ) always leads to a secondary disruption of adherens junction (AJ), and vice versa. This response, if occurring in the testis, would disrupt spermatogenesis because the blood-testis barrier (BTB) must remain intact during the transit of spermatids in the seminiferous epithelium, which is associated with extensive apical ectoplasmic specializa...

متن کامل

The Effects of Hydroalcoholic Extract of Matricaria Recutita on the Hormonal Pituitary-Testis Axis and Testis Tissue Changes of Mature Male Rats

Background & Objectives: Matricaria recutita is one of the most ancient and well- known medicinal plants, and its role in the treatment of a wide range of diseases has been studied . The purpose of this study was to investigate the effect of Matricaria recutita on spermatogenesis and the pituitary-gonadal axis in male adult rats.   Materials & Methods: In this experimental study, the animals we...

متن کامل

Par3/Par6 polarity complex coordinates apical ectoplasmic specialization and blood-testis barrier restructuring during spermatogenesis.

The Par3/Par6/aPKC and the CRB3/Pals1/PATJ polarity complexes are involved in regulating apical ectoplasmic specialization (ES) and blood-testis barrier (BTB) restructuring in the testis. Par6 was a component of the apical ES and the BTB. However, its level was considerably diminished at both sites at stage VIII of the cycle. Par6 also formed a stable complex with Pals1 and JAM-C (a component o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 26  شماره 

صفحات  -

تاریخ انتشار 2008